Contrast rectification and distributed encoding By ON-OFF amacrine cells in the retina.
نویسندگان
چکیده
The encoding of luminance contrast by ON-OFF amacrine cells was investigated by intracellular recording in the retina of the tiger salamander (Ambystoma tigrinum). Contrast flashes of positive and negative polarity were applied at the center of the receptive field while the entire retina was light adapted to a background field of 20 cd/m(2). Many amacrine cells showed remarkably high contrast gain: Up to 20-35% of the maximum response was evoked by a contrast step of only 1%. In the larger signal domain, C50, the contrast required to evoke a response 50% of the maximum, was often remarkably low: 24 of 25 cells had a C50 value of < or =10% for at least one contrast polarity. Across cells and contrast polarity, the dynamic ranges varied from extremely narrow to broad, thereby blanketing the range of reflectances associated with objects in natural environments. Although some cells resembled "contrast rectifiers," by showing similar responses to contrasts of opposite polarity, many did not. Thus for contrast gain and C50, individual cells could show a strong preference for either negative or positive contrast. In the time domain, the preference was strong and unidirectional: for equal contrast steps, the latency of the response to negative contrast was 20-45 ms shorter than that for positive contrast. The present results, when compared with those for bipolar cells, suggest that, on average, amacrine cells add some amplification, particularly for negative contrast, to the high contrast gain already established by bipolar cells. In the time domain, our data reveal a striking transformation from bipolar to amacrine cells in favor of negative contrast. These and further observations have implications for the input and output of amacrine cell circuits. The present finding of substantial differences between cells reveals a potential substrate for distributed encoding of luminance contrast within the ON-OFF amacrine cell population.
منابع مشابه
The ON pathway rectifies the OFF pathway of the mammalian retina.
In the vertebrate visual system, ON cells respond to positive contrasts and OFF cells respond to negative contrasts, and thus both ON and OFF cells exhibit rectification. We investigated the retinal circuits by which the ON pathway rectifies the OFF pathway. White noise was projected onto an in vitro preparation of the mammalian retina and excitatory currents were recorded from retinal ganglion...
متن کاملTargeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina.
Cellular mechanisms underlying the precision by which neurons target their synaptic partners have largely been determined based on the study of projection neurons. By contrast, little is known about how interneurons establish their local connections in vivo. Here, we investigated how developing amacrine interneurons selectively innervate the appropriate region of the synaptic neuropil in the in...
متن کاملTarget-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina.
Neurons that release more than one transmitter exist throughout the CNS. Yet, how these neurons deploy multiple transmitters and shape the function of specific circuits is not well understood. VGluT3-expressing amacrine cells (VG3-ACs) provide glutamatergic input to ganglion cells activated by contrast and motion. Using optogenetics, we find that VG3-ACs provide selective glycinergic input to a...
متن کاملCharacterization of small-field bistratified amacrine cells in macaque retina labeled by antibodies against synaptotagmin-2.
Macaque retinae were immunostained with monoclonal antibodies directed against the protein synaptotagmin-2 (Syt2). Syt2 was localized in a population of small-field amacrine cells, whose cell bodies formed a regular mosaic within the inner nuclear layer, indicating they represent a single amacrine cell type. The labeled amacrine cells had a bistratified appearance with a dense dendritic plexus ...
متن کاملAnalysis of synaptic inputs to on-off amacrine cells of the carp retina
To elucidate the synaptic transmission between bipolar cells and amacrine cells, the effect of polarization of a bipolar cell on an amacrine cell was examined by simultaneous intracellular recordings from both cells in the isolated carp retina. When either an ON or OFF bipolar cell was depolarized by an extrinsic current step, an ON-OFF amacrine cell was transiently depolarized at the onset of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 4 شماره
صفحات -
تاریخ انتشار 1999